
Copyright 2023 by Lucata Corporation

Lucata Technical Overview
Marty Deneroff (mdeneroff@lucata.com)

2January 25, 2024

WHAT DOES LUCATA DO?

Lucata’s goal is to provide a computer that is effective when executing
algorithms that work poorly on mainstream computers:
Those that require random access to very large, sparse datasets.

Lucata has developed a unique architecture / computing system called
Pathfinder that supports massive parallelism, near-linear scaling, and fine
grain concurrency that is well matched to the data types and sizes of today
and the future. It efficiently performs analytics on large-scale datasets in
real- time, enabling applications that are inefficient or intractable today.

Pathfinder delivers unparalleled CAPEX and OPEX economics …better
performance per dollar, per watt, and per square foot.

3January 25, 2024

LUCATA HISTORY

Lucata (originally called EMU Technology, an acronym for Enhanced Memory
Utilization) was founded in 2010
by Drs. Peter Kogge, Jay Brockman, and Ed Upchurch.

Emu’s initial goal was to develop a computer that could work effectively
with sparse data in enormous memory systems. The problem space
centered on finding the “Needle in a Haystack” – the bits of important
information embedded in gigantic collections of raw data, and to detect
Non-Obvious Relationships among pieces of this data.

This work was largely funded by the NSA through the first ten years of the
company’s existence.

4January 25, 2024

Large in-memory graph databases
Large knowledge graphs
Retrieval-Augmented Generation
Sparse models of large physical systems

Large in-memory Relational Databases

Very large (brain-scale) AI models

Sparsity = Number of Values / Number of Indices; Max. possible = 1.0

Pathfinder

x86 Server

GPU

1.0

0.5

0.1

64 GB 16 TB 4 PB
Data Size

Sp
ar

si
ty

PRIMARY APPLICATION DOMAINS
Datasets that are hundreds of TB in size, high in sparsity and require concurrent queries without performance loss.

Copyright 2023 by Lucata Corporation

5January 25, 2024

LUCATA PATHFINDER DATA CENTRIC PLATFORM

Ø Migrating Thread technology allows Processing In Memory as it moves computation to the memory system containing the
data being processed and performs the processing at that memory.

Ø More memory per rack at a lower overall cost; handles multiple petabytes datasets.

Ø Global Shared Memory can span thousands of cabinets.

Ø Maintains linear performance as the dataset grows.

Ø Support for real-time streaming ingest at enormous rates from hundreds of high-speed network interfaces.

Ø Unprecedented energy efficiency, with a compact system that minimizes use of datacenter space.

Ø Millions of concurrent threads managed by hardware can be dedicated to work on a single complex task or a very large
number of concurrent tasks.

Ø Vastly simplified programming using familiar programming languages such as C++ and Python, and the ubiquitous Linux
operating system.

Copyright 2023 by Lucata Corporation

6January 25, 2024

*Large AWS Server - Intel(R) Xeon(R) CPU E7-8880 v3, 2.30GHz, 128 vCPUs (64 cores, 2 threads per core), 4TB memory

Breadth-First Search
(BFS) is a key algorithm
used to search a tree or

graph data structure

Lower End-to-End
Time is Better

ASIC Based Pathfinder
will deliver a 10-25x

performance
improvement

MEASURABLE CONCURRENCY AND SCALABILITY
Common Graph benchmarks measure performance of a single query. But real-world applications need a high rate of

simultaneous queries and updates on a shared graph.

Lucata Pathfinder supports multiple concurrent queries, running the same or disparate algorithms, without losing performance.

Redis Graph on x86 AWS server*

8 Node Pathfinder
32 Node Pathfinder

RedisGraph Time per query
increases as the number of
concurrent BFS increases

Pathfinder: Time per query
decreases from 1 to 8
queries, then stays almost
constant for increasing
concurrency.

Copyright 2023 by Lucata Corporation

7January 25, 2024

Scalability: Gene Amdahl was a smart guy!
All scaling in parallel computers is limited by Amdahl’s Law:
Texecution = Tserial + (Tparallel / Nthreads)
Is there more to it than that? NO! … But portions of both Tserial and Tparallel are often
overlooked. Pathfinder minimizes or eliminates these hidden costs.
Components of Tserial Conventional

Computers
Pathfinder Components of Tparallel Conventional

Computers
Pathfinder

Serial part of user
Program

Same Parallel Part of User
Program

same

Cache-Coherent
Write Access

Coherency
Messages – 10s
to 100s of cycles

NA Message Transmit /
receive driver code

100s of
instructions

NA

Message System
Initialization

100s of
instructions

NA

Locks / critical
regions

100s of
instructions

10s of
instructions

Thread startup /
synchronization

100s of
instructions in
OS / Runtime

10 - 40 cycles

The Pathfinder Architecture revolves around minimizing / eliminating the non-program portions of Tserial
through customized hardware, resulting in excellent scaling to thousands of Nodes and millions of threads!

8January 25, 2024

Ø Shared memory multiprocessor that scales from 1 to 64K nodes (powers of 2)
Ø No Data Caches, No TLB
Ø Performance scales near-linearly over a range of system sizes
Ø No software modifications needed as system size grows
Ø Supports over 64k concurrent threads per Rack
Ø Up to 8 TB DRAM / Rack in current generation, 128 TB / Rack by end of year
Ø Memory-Side Processing of atomic memory operations supporting

synchronization and fine grain access control
Ø Reduces Communications Bandwidth requirements by using Migratory Threads

• Thread moves its execution site to where the data resides
• Results in dramatic reduction in interconnect bandwidth used

Ø Tightly integrated with x86 (Xeon / Epyc) Host server
• Runs operating system (RHEL)
• Dense / Sequential portions of applications can execute on Host

WHAT IS LUCATA PATHFINDER?
A specialized computer designed to efficiently perform analytics on large datasets in real time.

9January 25, 2024

Ø Moves computation to the memory system containing the data being processed and performs the processing at that
memory. Multiple memory channels per node, each with its own Memory-Side Processor, maximize parallelism.

Ø Global Shared memory handles datasets up to multiple petabytes in size..

Ø Petabyte-scale Global Shared Memory that can span hundreds of cabinets and can support millions of concurrent
threads.

Ø Eliminates most of the hidden serial component of applications by replacing networking stack with hardware message
forming and delivery.

Ø Barrel Processors hide nearly all stalls, maintaining nearly perfect IPC (Instructions Per Clock) > 0.9. Enough Barrel
Processors are provisioned to keep the memory system (the most expensive component) fully utilized.

Ø Maintains linear performance scaling in both dataset and system size.

Ø Support for real-time streaming ingest from hundreds of high-speed network interfaces.

Ø Millions of concurrent threads managed by hardware can be dedicated to work on a single complex task or a large
number of concurrent tasks.

Ø Simplified programming using familiar programming languages such as C / C++ and the ubiquitous Linux operating
system in a shared memory environment. Properly written programs can scale across all system sizes without
modification.

ADVANTAGES OF LUCATA PATHFINDER
Specialized analytics hardware platform, designed to efficiently perform analytics on large datasets in real time.

10

Pathfinder System Architecture

11January 25, 2024

Ø Migratory Threads push the compute to the data (instead of pulling data to the core doing the computation)
• Thread moves its execution site to where the data resides
• Results in dramatic reduction in interconnect bandwidth used
• Reduces latency by making all memory reads local
• Improves core utilization by vacating HART (HARdware Thread – register set holding the context of an executing

thread) on starting core as soon as remote access triggers migration, allowing a new thread to begin execution
Ø Memory-Side Processing performs computation at the memory controller instead of in processing cores

• Reduces data movement between memory controller and core
• Implements fine grain atomic updates of shared memory locations
• Avoids need for Cache Coherency
• Increases concurrency by allowing thread to launch many atomic updates and synchronize on Acknowledges
• Operations: CAS, SWAP, ADD, AND, OR, XOR, MIN, MAX, FP-ADD on 8, 16, 32 and 64-bit values (FP on 32 and 64)
• Upcoming: MemCopy, Vector Ops, Dyadic Ops, Indirect Ops, String Search-and-Match

PATHFINDER Bread (Migratory Threads) & Butter (Memory-Side Processing)

12January 25, 2024

Pathfinder Node Architecture

Pathfinder – A
• Agilex-7 FPGA
• 1 Node / Board
• COTS Board from established manufacturer
• Up to 1 TB / Node (4x DDR4 DIMMs)
• Up to 1 TB / Node CXL Mem (2x modules -

option)
• 250 MHz Core Clock (est.)
• 16 LC “Barrel” Processors / Node
• 12-16 MSPs feeding mix of DDR and CXL

Channels
Atomic ADD, AND, OR, XOR,

MIN, MAX, FP_ADD
~ 250 M atomics / s / MSP
New Vector and Dyadic Operations

• 200 G Enet Port to System Network
• Edge Finger PCIe G5 SC Connection
• Uses SC’s IO device slots

13January 25, 2024

Massive Concurrency thru ‘Barrel’ Processing Cores
Each Lucata Core (LC) is a “Barrel Processor”, executing from 64 different threads at once
Ø Register file holds 64 contexts (HARTs = HARdware Threads) at once

• Extra Register File Read and Write Ports support thread unload / load without stealing execution cycles
Ø Hardware Scheduler chooses a different HART to execute every cycle from among HARTs that are Ready

• Upcoming Priority Mode selects among Ready High Priority threads when such threads exist – improves
performance in critical regions involving locks

• Migrating / Completed threads unloaded from HARTs and new threads loaded without interfering with
executing threads

Ø Hides latency of local memory access
Ø Thread alternation eliminates need for Hazard Detection and Bypass logic
Ø Shares one set of power-hungry instruction processing and execution logic among 64 HARTs
Ø Icache shared among all HARTs – gets high hit ratio because generally have many concurrent threads

executing the same program
• Hardware prefetcher has good success filling Icache before program reaches a missing line

16 LCs per node can generate over one memory access per clock (on average, assuming ~7% of instructions
reference memory), thus maintaining full memory utilization

14January 25, 2024

LUCATA PATHFINDER-A

Pathfinder Attributes
• State-of-the-art FPGA allows instruction

set flexibility
• Parallel load capability
• Scale capabilities 16 -> 64K Nodes

with:
• Multiple, Parallel queries
• Dynamic Update / Addition of new data
• Uniform Shared Memory to 254 Bytes
• Atomic Memory Operations on all

memory, at full memory access rate
• Incremental Updates to Database with

concurrent queries
• Can act as Intelligent Multi-server

Memory Pool
• ~ 24 KW / Rack, Air Cooled – No Liquid

Cooling Required

Programming Model Options
ü GraphBLAS
ü C/C++
ü Python on SC
ü Lucata Libraries & Utilities

8 Lucata Nodes in 5U Rack Space:
Execute 8K Concurrent Threads
No D-Cache, No TLB
128 64-way multi-threaded Cores
32 DDR4 Memory Channels
8 100G NICs – up to 2 Tb/s BW

16 TB memory (8 TB DDR + 8 TB CXL)
Up to 16 NVME SSDs

15January 25, 2024

Pathfinder-A: COTS Agilex Boards in COTS Server

8x Lucata Nodes plus Hot
standby Nodes or optional
GPUs

8x SSD 8 or 16x CXL Memory Modules

16

Software Environment

17January 25, 2024

Software Environment
Ø Low-level Programming Model
• C/C++/Cilk
• Distributed Data Structures
• C/C++ Parallel Programming Abstractions
• Architecture Specific Features (e.g. Atomic and Remote Operations)

Ø Domain-specific Libraries
• Beedrill Graph Algorithms
• Lucata Graph BLAS/LAGraph Algorithms

Ø Program Execution Model and Software Stack
Ø Application Development and Porting Process
Ø Example Applications
• Beedrill Graph Data Structures and Page Rank Algorithm
• Concurrent Graph Algorithms
• Pattern Matching Workflow

Ø Development Environment
• Compiler Toolchain and Libraries
• Simulator and Profiling Tools
• Hardware Performance Counters and Profiling Tools

18January 25, 2024

Programming Model

19January 25, 2024

C/C++ with Lucata libraries and parallel extensions
Highest performance, greatest flexibility

Requires porting effort by user, but few new concepts for skilled programmers

High Productivity Computing
IDC predicts a shortfall of four million developers by 2025 and Gartner lists talent shortage as one of the

top five emerging risks for companies.

Domain specific libraries and APIs
(GraphBLAS/LAGraph today, others in the future)

Many algorithms available in Open-Source Community. Supports interfaces like Arkouda

Commercial Graph Databases and analytic software packages
Such as Trovares, RedisGraph, Neo4j

Lowest programming effort for user, requires porting

Open-Source Software, No vendor or platform lock-in

Increasing
performance
& flexibility

Increasing
level of

abstraction

Lucata Programming Models

20January 25, 2024

Ø Dynamic parallelism using OpenCilk language (extensions to C/C++)
• cilk_spawn: spawn a thread (locally or remotely)
• cilk_for: distribute iterations of a loop among parallel threads
• cilk_sync: synchronize all the threads spawned in a function
* Thread scheduling handled efficiently in hardware, not via software runtime

Ø Distributed data structures
• Distributed arrays – Striped across the nodes in the system with various block sizes
• Replicated data – Data allocated at same offset at each node; Accesses are to local instance

to eliminate migrations for frequently used data

Ø C/C++ Parallel abstractions
• apply/for_each – applies worker function to each iteration of loop, distributes work among

parallel threads based on scheduling policy
• reduce – parallel reduction over array
• fill – parallel array fill

Cilk/C/C++ Programming Model

21January 25, 2024

Memory operations performed at the Memory Side Processor (MSP)

Ø Migrating Atomic Memory Operations for lock-free or fine grain locking algorithms
• Integer: MIN, MAX, ADD, AND, OR, XOR, SWAP, CAS
• Double Precision Floating Point: ADD, SUB, SUBreverse
• Thread migrates if data is remote

Ø Non-blocking Remote Atomic Memory Operations
• Integer: MIN, MAX, ADD, AND, OR, XOR
• Double Precision Floating Point: ADD, SUB, SUBreverse
• Fire and forget
• Do Not cause thread migration
• Do Not return result
• Do return acknowledgement
• FENCE used to ensure all ACKs have returned

Ø Under Development: Stationary Loads and Atomic Memory Operations
• Same set of operations as migrating atomics + remote read
• Thread does not migrate – sends a remote operation and waits for result to be returned

(e.g. remote read or remote atomic add)

Specialized Memory Operations

22January 25, 2024

Ø GraphBLAS: library of standard building blocks for graph algorithms in the language of linear
algebra
• GraphBLAS API specification https://graphblas.org
• Suite Sparse GraphBLAS implementation http://faculty.cse.tamu.edu/davis/GraphBLAS.html
• Lucata GraphBLAS (LGB) implementation for the Lucata architecture (GraphBLAS v2.0)

Lucata GraphBLAS Library

Basic Functionality (Matrix/Vector/Scalar)
• Multiplication
• Element-wise operations
• Reduction to vector/scalar
• Apply unary/select operator
• Submatrix assignment/extraction
• Transpose
• New, build, get, set, clear, free…
Descriptors modify behavior
• Accumulate
• Mask
• Transpose
• Replace

Component Examples

Type int8/16/32/64, Boolean, …

Monoid Plus, times, min, max, …

Semiring Plus_times, Min_plus, …

Unary operation Identity, inverse, negation, …

Binary operation Equal, greater than, …

https://graphblas.org/
http://faculty.cse.tamu.edu/davis/GraphBLAS.html

23January 25, 2024

Ø LAGraph is a library of algorithms built using GraphBLAS
Ø “Vanilla” algorithms target only functionality defined in the v2.0 specification

(no Suite Sparse extensions)
• Breadth first search
• Triangle count
• Betweenness centrality
• Single source shortest path
• Connected components
• Page rank

LAGraph Library

24January 25, 2024

Stationary Core
Code & Libraries

LUCATA Cores
Code & Libraries

C / C + + / C i l k C o d e o n t h e L C s

L U C A T A D r i v e r

L i n u x S h e l l

P r e - E x i s t i n g S W P y t h o n I n t e r f a c e

P y t h o n S c r i p t

Programming Stack

User-Written
Python Program

Python InterfacePre-Existing Software

Lucata SC-LC API Shim Linux Shell

Lucata Driver

User C/C++/Cilk Code on the LCs

User-Written
C/C++ Program

Lucata Libraries

25January 25, 2024

Ø Stand-alone model: main program runs on the Lucata Pathfinder cores (LCs)
• Main LC program
• Parallel program written entirely in C/C++/Cilk with Lucata libraries
• Compiled with the Lucata OpenCilk Compiler

• Linux runs on the standard x86 host (SC)
• Driver code on the SC loads the program to the LCs and launches the initial thread running main() to the LCs
• Initial main thread can spawn/sync additional threads and migrate through the system as needed
• Upon completion, main thread returns to the SC driver
• SC runtime provides file I/O, system calls, and exception handling

Ø Accelerator model: main program runs on the host (SC) and issues calls via the SC-LC API to run data-
intensive kernels in parallel on the LCs
• SC-LC API library provides interface, similar to OpenCL or CUDA
• Allocate memory on the LCs
• Move data back-and-forth between the SC and LCs
• Invoke kernels (threads) that run on the LCs

• SC program
• Written in C/C++/Python or other language that can call C functions
• Compiled with standard tools
• Runs on SC and uses SC-LC API library to make calls to specialized kernels in LC program running on LCs

• LC program written in C/C++/Cilk with Lucata libraries and compiled with Lucata compiler

Program Execution Model

26January 25, 2024

Program Development Characteristics

Ø Traditional distributed system
• Program written to take advantage of cache
• May require mixed programming model – e.g. OpenMP + MPI
• Explicit distribution of data and definition of communication pattern
• Ineffective for irregular data access patterns
• May need to rewrite communication patterns for changes in system configuration

Ø Lucata
• Program does not require cache-based locality or explicit communication for correctness
• Cyclic distribution typically provides first level load balance
• Programs with little locality (e.g. pointer chasing) system will perform better than a traditional cache-

based/distributed system
• Can explicitly distribute data to take advantage of node-level locality when it exists
• Program scales with size of system

27January 25, 2024

Application Development Process

Ø Identify execution patterns
• How computation touches data
• Where parallelism can be extracted

Ø Distribute data/computation using distributed data structures
• Cyclic or random distribution will be correct
• Take advantage of node level locality where available
• Balance workload/avoid hotspots where possible*

Ø Implement parallelism using cilk_spawn and/or parallel abstractions
• Target enough threads to fill HARTs
• Choose threading model
• Parallel – uniform workload, so each thread is given the same number of iterations to process
• Dynamic – work per element may be unbalanced, so each thread atomically grabs work from a local work queue

* Simulator, profiling and visualization tools to understand program execution characteristics

28January 25, 2024

Programming Model Porting Effort Comments
Parallel, shared memory
(e.g. OpenMP, XMT)

Low effort • Existing parallel constructs typically map to Lucata parallel
abstractions

• Often need to extract additional levels of parallelism to support
more threads

• MTA/XMT codes port most easily – highly multithreaded with
randomized memory

• Map data structures to distributed data structures
Sequential Moderate effort,

most flexibility
• Define parallel algorithms and data distribution from scratch

Distributed memory
(e.g. MPI)

Moderate effort • Explicit communication doesn’t map as directly to
multithreaded programming model (e.g. mpi_send/receive)

• New stationary, synchronous remote operations will map more
closely

Application Porting

29January 25, 2024

Summary

Ø Lucata Pathfinder is a differentiated system that performs better per $, Per watt, and Per sq. foot for Large-scale
critical workloads in graph analytics, Big Data, and AI/ML.

Ø Massive business opportunity to deliver Pathfinder platform in enterprise-scale deployments across commercial,
government, and defense spaces.

Ø Lucata requires a partner to provide marketing / distribution clout to make this opportunity a reality.

THANK YOU!
Marty Deneroff, CEO mdeneroff@lucata.com

Jim Light, VP Business Development jlight@lucata.com

mailto:mdeneroff@lucata.com
mailto:jlight@lucata.com

