Optimizing Seismic HPC in the Cloud for Performance and Cost

Society of HPC Professionals Lunch & Learn 25 June 2020

Branden Moore HPC & Benchmarking Manager

nag

Experts in numerical software and High Performance Computing

Numerical Algorithms Group

NAG

Founded 1970 Started from UK academia Offices in UK, US & Japan

NAG Products

NAG Library Fortran Compiler Algorithmic Differentiation

HPC Managed Services

Technology evaluation & Benchmarking

Accelerator development

Code Porting / Optimization Cloud HPC Migration

Companies ARE moving HPC workloads to the Cloud

Even Oil & Gas companies

What's the best way?

(And how much will it cost?)

This talk: Seismic HPC from the cloud

Hypothetical Seismic workload (RTM)

- (Extremely) Brief introduction to RTM
- A few things to consider optimizing, and dials to turn

Explore moving an RTM workload to cloud

- What cloud resources to use?
- How to pick the best resource for the workload?
- Cost-to-Solution vs Time-to-Solution

- Basically doing an ultrasound of the earth
 - Emit shock waves into the earth, they bounce back reveals subsurface image
- Reverse-Time-Migration (RTM) is taking this data, producing a volumetric image of the the subsurface
 - (-) Large amounts of input data (TB)
 - (-) Huge amounts of temporary data (PB)
 - (-) Expensive computation as well
 - (+) Each "shot" is computationally independent

► Adding physics/fidelity → Even more computation

Hypothetical Baseline – in-house RTM

On-prem cluster

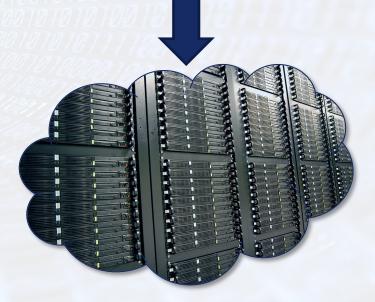
- 480 Nodes (~1PF)
- Dual socket Intel Broadwell, 16 cores/socket, 128GB RAM
- InfiniBand 100Gb/s
- Lustre-based storage
 - 8PB storage, 256GB/s bandwidth

Full Workload

- In-house developed RTM code
 - Isotropic acoustic model
- ~10,000 shots per campaign
 - (~350 TB raw seismic data)
- Each Shot
 - Reconstructing to 2048³
 - MPI / domain-decomposed to 4 nodes
 - 50TB snapshot data
- Full cluster, ~60 days

Target environment – "The Cloud"

"Lift & Shift"


- Replicate our nodes
- Replicate our storage (and how it's used)
- Replicate our scheduler, queues, etc.

Very difficult to match exactly

- VM instance types differ
- Interconnect may be different
- Storage totally different

Almost NEVER cost effective

Lift & Shift - AWS

Compute nodes

On Prem - Dual socket Intel Broadwell, 16/32 cores, 4GB RAM/Core (no HT)

VM Instance	vCPU	RAM	Networking	Architecture	List Price / hour	\$ / HW Core-Hour	\$/hr @ 15,360 cores
m5.24xlarge	96	384	25Gbps	Skylake/ Cascade Lake	\$4.608	\$0.096	\$1,474.560
m5n.24xlarge	96	384	100Gbps EFA	Cascade Lake	\$5.712	\$0.119	\$1,827.840
c5n.18xlarge	72	192	100Gbps EFA	Skylake	\$3.888	\$0.108	\$1,658.880
c5.18xlarge	72	144	25Gbps	Skylake	\$3.060	\$0.085	\$1,305.600
c5.24xlarge	96	192	25Gbps	Cascade Lake	\$4.080	\$0.085	\$1,305.600
c5a.24xlarge	96	192	20Gbps	Rome	\$3.696	\$0.077	\$1,182.720

Using on-demand Pricing

• Build your own?

Storage

- Amazon FSx for Lustre managed service various performance tiers
 - 256GB/s @ Persistent 50 5120TB @ \$0.14/GB-month -> ~\$1k/hr

Lift & Shift - AWS

On-Prem

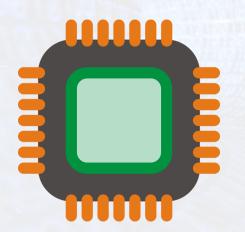
- Compute
- 480 Nodes (~1PF)
- InfiniBand 100Gb/s
- Lustre-based storage
- 8PB storage, 256GB/s bandwidth
- ~60 days compute

AWS version

- Compute
- 480 Nodes c5n.18xlarge \$1,658/hr
- EFA-based 100Gb/s
- Storage
- 8PB Lustre FSx @ 400GB/s \$1,555/hr
- ~47 days compute
- Total job cost: ~ \$3.9M

How can we do better?

Change the application?Change the platform?



Change the application

RTM has two major sources of cost:

- Time-stepping wave equations (computational cost)
- Image condition (storage)

Change the application: Time-stepping

- Time-stepping often (but not always) driven by wide stencil calculations
- Highly sensitive to vectorization and caching, but... driven by the system's memory bandwidth
- Thus common strategies for optimizing this:
 - Accelerate time-stepping with GPUs (high bandwidth devices)
 - Domain decomposition over MPI (more than one node per shot)
 - Optimize cache utilization in the stencils

Change the application: Image Condition

The image condition is usually computed in two passes:

- Forward pass: periodic snapshots made
- Reverse pass: convolved with forward pass by retrieving snapshots, accumulated into image
- The primary difficulty is dealing with snapshots, we can improve this in the following ways:
 - Store fewer snapshots, but recompute them in reverse pass (recomputation strategies)
 - Domain decompose enough that aggregate storage of all nodes can store all snapshots

How can we do better?

Change the application?Change the platform?

Change the platform

What all is available?

Instance types

- Memory / CPU Speed / # cores / Storage ratios
- CPU architecture
 - What about AMD? ARM?
 - Lots of instances masquerade do you know what you're running on?
- Accelerators
- Are we "full machine" size, or some partial segment?
 - If you aren't at least full-socket, you're sharing resources

Interconnect

• Some platforms have limited support for advanced networking (ie: IB, EFA)

Let your application be your guide

Do a good profile of your application

Be aware of what you can profile on the cloud

Know your bottlenecks

- CPU-bound? (Rarely, but possible) •
- Memory-bound? •
- Interconnect? Latency or Bandwidth? •
- 1/0? •

Addressing bottlenecks

Compute-bound

- Domain-decomposition
- Accelerators
- Higher core-count nodes
- Memory bandwidth
 - Explore alternate architectures / instance sizes
 - Accelerators
 - AMD EPYC, AWS's Graviton (ARM) have higher bandwidth than Xeon

- Interconnect Bandwidth
 - Often scales with size of VM instance

Interconnect latency

- Some clouds have HPC-focused networking – IB, EFA.
- Placement groups
- Reduce node count?
- Async communications?

Addressing bottlenecks – I/O

Evaluate different services & service levels

- Filesystems: NFS, Lustre, BeeGFS, NetApp, ClusterStor
- EBS volumes / Managed Disks / Persistent Disk
- Direct to Object store
- Use of local SSDs
 - I/O Optimized Nodes with many large SSDs
- Add I/O nodes to create a "private" filesystem
- Explore Asynchronous I/O options
 - Less pressure on bandwidth

Build a cost model

- Too many options to keep track
- Explore options available
 - Make sure you know what you're getting!

- Understand how options interplay
 - Increase I/O bandwidth, decrease runtime
- Build a spreadsheet
 - I/O, Compute, Network
 - Bandwidths, latencies, FLOPS, etc.

Cannot focus on \$/hr for a resource

- Does including it speed up the job enough to cover the cost?
- If a job runs faster by using a more expensive resource, the total cost may be lower

Azure example: HC vs HBv2

- HC \$3.49/hr, 44 cores
- HBv2 \$3.96/hr, 120 cores

RTM Workload Exploration

- 2048x2048x2048 reconstruction volume
- 7500 Timesteps, Snapshotting every 10 steps
 - ~50TB of snapshot space / shot
- Total RAM / Shot: ~500GB
- 10,000 Shots

- Assume raw input data lives in S3
 - no extra filesystem required for it

Options

Storage

- Lustre FSx various performance levels 50MB/s/TiB -> 200MB/s/TiB
- EBS up to 500MB/s/Volume (Can attach multiple volumes)
- On-node NVMe/SSD/HDD

Compute Options

- c5n 36 core "Skylake", EFA, no disk
- c5d 48 core "CascadeLake", 3.6TB NVMe
- [cmr]6g 64 core ARM "Graviton"
- c5a 96 core AMD Epyc "Rome"

Use 4x c5n.18xlarge for compute / shot

- Lustre FSx Scratch-level 6PB (120*50)
 - 200MB/s/TiB @ \$0.14/GB-month
 - Shared across entire cluster
- EBS 1 Volume
 - 13TB for 500MB/s @ \$0.045/GB-month
- EBS 2 Volumes

162

• 26TB for 1000MB/s @ \$0.045/GB-month

ft & SI

\$3.9N

\$1.97N

\$3.62

\$2.66N

Use 6PB Lustre FSX Scratch, solve 120 shots together

- 4x c5.24xlarge \$4.08/hr (each)
 - Newer Xeon, 48 cores
- 4x c6g.16xlarge \$2.17/hr (each)
 - AWS Graviton, 128GB, 64 cores
- 1x r6g.16xlarge \$3.2256/hr (each)
 - AWS Graviton, 512GB, 64 cores

\$3.9N

Try different Concepts

- Large local SSD
 - 1x i3en.24xlarge 60TB local SSD storage
 - 48 Skylake cores
 - \$10.848/hr •
- Combine Compute + Storage
 - 4x c6g.16xlarge + 1x i3en.24xlarge
- All In-Memory
 - 2x u-24tb1.metal 24TB RAM •
 - 224 Skylake cores •
 - Unknown price \$50/hr? •
- Over-decompose w/ SSD
 - 16x c5d.24xlarge ~3TB SSD •
 - 48 CascadeLake cores
 - \$4.608/hr .

\$3.9M

Takeaways

Understand options available

- Know what you're getting and what you're not
- Understand your application
 - Know its bottlenecks
- Understand how options interplay
 - Increase I/O bandwidth, decrease runtime
- Build a spreadsheet cost model
 - Interplay and balance not always obvious

Price-Per-Hr vs Cost-to-Solution

Real world challenges

Integration with existing infrastructure

- Job schedulers, File Systems, etc.
- Policies, exposing infrastructure-as-code to users
- Some providers have a "cloud scheduler" that might work for you
 - AWS Batch, Azure Batch
- Availability of resources
 - Cloud really isn't infinite

Traditional global filesystems are expensive

- Move data from cold storage to hot storage during a job return it later.
- Everything constantly changes

NAG Cloud HPC Migration Service

New service offering from NAG

- HPC Cloud migration
- Cost-to-Solution focused platform & application optimization
- Partnering with the "Big 3" providers

https://nag.com/cloud-hpc

Experts in High Performance Computing, Algorithms and Numerical Software Engineering

www.nag.com blog.nag.com @NAGtalk

101101101101101 10011101101101100