About Faster Technology

- Faster Technology started with focus on government market
 - Signal processing solutions
- Now mostly a commercial focus
- Xilinx Certified Alliance Partner
 - FPGA boards and accessories
 - Design services
- Xilinx Authorized Training Provider

Using FPGAs for Computation

- Why
- Hardware
- Software

Why consider FPGAs for HPC?

- Better Power / Performance than GPU/CPU
- 3.8 Tb/s of high speed serial bandwidth – PCIe
 - Ethernet
 - Serial Memories
 - CCIX
- 172 GB/s of external DDR4 bandwidth
- 38.3 INT8 TOP/s

 12,288 DSP blocks

Why consider FPGAs for HPC?

Multiple memory types / configurations

- Range of internal memory types
 - Small LUT Rams
 - 11.8 MB of 36Kb Block Rams
 - 45 MB of 36KB Ultra Rams
 - 4 or 8 GB of High Bandwidth Memory (HBM)
 - External parallel memories
 - DDR / QDR / RLDRAM
- External (multi-ported!) serial memories
 - Micron Hybrid Memory Cube, Mosys Bandwidth Engine

Some FPGA Background

- Two branches to the family tree
 - Traditional FPGAs
 - Columns of configurable resources
 - Configurable routing
 - System on Chip parts
 - Combine a dedicated processor system with traditional FPGA on same die

Traditional FPGAs

- Very wide range of sizes available

 ~6K to 5M "Logic Cells"
 Most parts single die
 Larger multi-die parts
- Current generation arranged into columns of different types of resources and IO

The main building blocks

• Configurable Logic Blocks (CLBs)

- 8 Look Up Tables (LUTs) for Boolean logic
 - Any function of six inputs
 - Two functions of the same five inputs
 - Small memory
 - Small addressable shift register
- 16 Registers to hold state
- Some extra support logic
 - Carry look ahead logic for adders and counters
 - Muxes for wider logic functions

Embedded Memories

Block RAMs (BRAMs)

- 36Kb
- True dual port
- Can be used as FIFOs
- Can have ECC, byte write, multiple aspect ratios
- UltraRAMs
 - 36KB
 - Only in some parts

DSP Blocks

- Looks like a bit slice unit
 Many signals for cycle by cycle
 - Many signals for cycle by cycle control
- 25x18 signed multiplier
- 48 bit accumulator / ALU
- Pre-adder for symmetric FIR filters
- Data path muxes and pipeline registers
- Dedicated cascade routing up the column

Picture of DSP Block

External IO

Banks of IO Blocks (IOBs)

- High performance
- High range
- High density
- Each bank can have a different IO voltage
- Many different supported standards
- Combinatorial and registered data paths
- IO delay lines for timing adjustments
- Simple SERDES

Multi-Gigabit Transceivers

- Grouped into "Quads" of four with some shared resources
- Extremely configurable to support a large range of protocols
- Different types in different FPGAs
 - -GTX 12.5 Gb/s
 - GTH 16.3 Gb/s
 - -GTY 32.75 Gb/s
 - GTM 58 Gb/s using PAM4

PCle

- Multiple PCIe blocks in most FPGAs
- End point or root port
 - Root complex with a bit of added logic
- Up to Gen 4x8 in some FPGAs
- Up to Gen 3x16 in most FPGAs
- Can be used with partial reconfiguration to load part of the FPGA design over PCIe

Some other blocks

• ADC

- System Monitor 1 by 200 KS/s
- XADC 2 by 1 MS/s
- Internal temp and voltage sensors
- Specific external pins
- 100G Ethernet MAC
- 150G Interlaken MAC
- Video Codec
 H.263 and H.264

Just Being Introduced

High Bandwidth Memory

- Add stacks of HBM DDR in same package
- 4 or 8 GB
- 460 GB/S
- 32 AXI ports to access it
- Cache Coherent Interconnect (CCIX)
- RFSoC
 - Substitute A2Ds and DACs for an MGT quad
 - For radar and wireless

Zynq SoC Parts

• Zynq-7000

- -1 or 2 ARM Cortex A9 32 bit processors
- DDR2/3 memory controller
- Flash memory controllers
- AXI interconnections with the FPGA fabric
 - Including Accelerator Coherency Port
- Supporting IO peripherals
 - Ethernet
 - UART
 - ETC

Zynq-7000 picture

Zynq UltraScale+ Parts

- -2 or 4 ARM Cortex A53 64 bit processors
- 2 ARM Cortex R5 32 bit real time processors
- 2 TMR Microblaze support processors
 GPU
- Virtualization and system cache coherency
 - DDR3/4 memory controller
 - More AXI interconnects with FPGA fabric
 - 4 PS MGTs
 - More IO peripherals

Zynq MPSoC Picture

Zynq PS to PL interconnections

- Processors system and programmable logic connected with AXI
 - Arm eXtensible Interconnect
 - Both master and slave ports to allow either PS or PL to initiate transactions
 - Some ports have special features
- Xilinx Vivado software comes with a catalog of IP building blocks that use AXI for interconnect

The software

- Vivado is top level FPGA design entry tool
 - IP Integrator
- SDK or PetaLinux are embedded software tools
- SDSoC is newer tool that can do it all for using FPGA fabric to accelerate software functions
- FPGA design entry is in a state of transition

How it was/is

- "Programming" FPGAs based on Hardware Description Languages (HDLs)
 - Verilog / System Verilog
 - VHDL

The FPGA version of assembly language
 Timed languages

- You have to schedule the operations
- You deal with binding operations to basic elements in the FPGA

HDLs are inherently concurrent by default

Must add syntax to create sequential blocks of code

HDL Characteristics

- HDL code can be very low level

- Simple Boolean equations
- Directly instantiate basic building blocks

HDL code can be a bit more abstract

 Allow the synthesis tools to infer what you want from the code

HDL code can be structural

Looks like a hierarchy of function calls

How it is/will be

The FPGA equivalent to programming in C is: Programming in C!

- C is an untimed language, the tools deal with scheduling and binding of operations.
- Vivado HLS is the C design entry tool.
 - A point tool that will create a module to use in a higher level Vivado HDL / IPI based design
 - Will compile C, C++, SystemC, OpenCL kernel code into Verilog or VHDL.
 - Can package it as IEEE IP-XACT with AXI interfaces for the arguments

HLS

- One HLS project = one IP core
- User specifies algorithm in C, HLS performs scheduling and binding
- User controls implementation results using directives
 - Default implementation is as simple as possible
 - Unroll loops
 - Pipeline functions
 - Implement arrays / memories differently
 - Use directives remove bottlenecks in the critical path to achieve desired performance
- Package results as IP-XACT

SDSoC and SDAccel

Alternative top level tools

- Sit on top of Vivado, SDK, PetaLinux
- All design entry is in C,C++, SystemC, OpenCL
- SDSoC for Zynq parts
- SDAccel for PCIe FPGA cards
- Board vendor supplies a board support package
 - Reference design with infrastructure
 - User design merged into this

SDSoC and SDAccel

- User marks functions for acceleration

 Each function turned into an HLS project
 User creates HLS directives
- Design refactored with accelerated functions moved to FPGA fabric
 - Data flow analysis performed on accelerated functions
 - Appropriate data path and DMA engines wrapped around HLS generated IP cores
 - FPGA configuration files produced by SDx using Vivado, SDK, etc

Operating Beyond the Speed of Technology

SD software environments

reVISION

- Machine vision stack
- BNN
 - Binary Neural Networks
- DSP
 - FFTs, FIRs, Wireless algorithms
- Networking

