Past Event
We are a vendor-neutral, non-profit 501(c)(3) organization comprised of members from industry, government, and academia worldwide. Our mission is to educate and connect the HPC & AI user community with the latest technologies and best practices to optimize business processes and promote workforce advancement.
We focus on the high-performance systems used for AI, simulation, cloud computing, quantum computing, and visualization. Our members utilize these technologies in their work in oil & gas, renewable energy, climate modeling, life sciences, manufacturing, financial services, cybersecurity, government, and academia.
The Society of HPC Professionals past event
Lunch & Learn – August 2019
Physics of Memory and Learning – from the Perspective of Interacting Biomolecules
Held Thursday, Aug 22, 2019
Watch video:
[swpm_protected for=”2″ format_protected_msg=”1″]
Check back soon, undergoing editing
[/swpm_protected]
Abstract:
Calcium (Ca2+) signaling is a dynamic system where Ca2+ concentration fluctuates in range of 0.1-10μM with time. These short transient Ca2+ around the entry sites activate Ca2+-binding proteins such as calmodulin (CaM). The prototypical pathway describes CaM as encoding a Ca2+ signal by selectively activating downstream CaM-dependent proteins through molecular binding. However, CaM’s intrinsic Ca2+-binding properties alone appear insufficient to decode rapidly fluctuating Ca2+ signals. It has been proposed that the temporally varying mechanism for producing target selectivity requires CaM-target interactions that directly tune the Ca2+-binding properties of CaM through reciprocal interactions. In this presentation, I will focus on the binding mechanism of CaM and its target, which requires mutually and conformationally-induced changes in both participants Then, I will focus on two unique and distinct CaM binding targets, neurogranin (Ng) and CaM-dependent kinase II (CaMKII), which are abundant in postsynaptic neuronal cells and are biochemically known to tune CaM’s affinity for Ca2+ in opposite directions. My group has employed an integrative approach of quantum mechanical calculations, all-atomistic molecular dynamics, and coarse-grained molecular simulations to investigate the molecular mechanisms of CaM’s reciprocal interaction between target binding and Ca2+binding. The research of my group has been driven and tested in close collaboration with experimentalists.
I will also discuss about CaM binding and target selection in the context of evolution and in a crowded environment.
Speaker Bio:
Margaret S. Cheung
Department of Physics, University of Houston
Dr. Cheung is the Moores Professor of Physics at the University of Houston. She graduated from the National Taiwan University with a bachelor’s degree in chemistry and received her Ph.D. in physics from the University of California, San Diego. She carried out theoretical biological physics and bioinformatics research as a Sloan Postdoctoral Fellow at the University of Maryland and started her lab at the University of Houston in 2006. Dr. Cheung’s research focuses on protein folding inside a cell, calmodulin dependent calcium signaling, protein motors, actomyosin dynamics, and quantum efficiency in organic photovoltaics. She is particularly interested in developing multi-physics models that bridge the dynamics across wide temporal and spatial scales in subcellular biology and materials, and designing computational algorithms that integrate high-performance computing resources across heterogeneous systems. She is a fellow of the American Physical Society, a Senior Scientist at the Center for Theoretical Biological Physics and an Adjunct Professor of Bioengineering at Rice University.
Location:
The University of Houston Classroom and Business Building (CBB)
Room 522, 4742 Calhoun Rd.